Quantum superposition and Quantum entanglement

Quantum entanglement is known to be the exchange of quantum information between two particles at a distance, while quantum superposition is known to be the uncertainty of a particle (or particles) being in several states at once (which could also involve the exchange of quantum information for a particle that is known to be in several locations simultaneously). Quantum superposition and entanglement create an enormously enhanced computing power.

Quantum superposition

One of the properties that sets a qubit apart from a classical bit is that it can be in superposition. Superposition is one of the fundamental principles of quantum mechanics. In classical physics, a wave describing a musical tone can be seen as several waves with different frequencies that are added together, superposed. Similarly, a quantum state in superposition can be seen as a linear combination of other distinct quantum states. This quantum state in superposition forms a new valid quantum state.

Think of a qubit as an electron in a magnetic field. The electron’s spin may be either in alignment with the field, which is known as a spin-up state, or opposite to the field, which is known as a spin-down state. According to quantum law, the particle enters a superposition of states, in which it behaves as if it were in both states simultaneously. Each qubit utilized could take a superposition of both 0 and 1.

Quantum entanglement

Particles that have interacted at some point retain a type of connection and can be entangled with each other in pairs, in a process known as correlation. Knowing the spin state of one entangled particle – up or down – allows one to know that the spin of its mate is in the opposite direction. Quantum entanglement allows qubits that are separated by incredible distances to interact with each other instantaneously (not limited to the speed of light). No matter how great the distance between the correlated particles, they will remain entangled as long as they are isolated. Taken together, quantum superposition and entanglement create an enormously enhanced computing power. Where a 2-bit register in an ordinary computer can store only one of four binary configurations (00, 01, 10, or 11) at any given time, a 2-qubit register in a quantum computer can store all four numbers simultaneously, because each qubit represents two values. If more qubits are added, the increased capacity is expanded exponentially.

What is the problem with quantum computers?

Interference – During the computation phase of a quantum calculation, the slightest disturbance in a quantum system (say a stray photon or wave of EM radiation) causes the quantum computation to collapse, a process known as de-coherence. A quantum computer must be totally isolated from all external interference during the computation phase.

Error correction – Given the nature of quantum computing, error correction is ultra-critical – even a single error in a calculation can cause the validity of the entire computation to collapse.

Output observance – Closely related to the above two, retrieving output data after a quantum calculation is complete risks corrupting the data.

How do you make a qubit?

In theory, anything exhibiting quantum mechanical properties that can be controlled could be used to make qubits. IBM, D-Wave and Google use tiny loops of superconducting wire, others use semiconductors, and some use a combination of both. Some scientists have created qubits by manipulating trapped ions, pulses of photons or the spin of electrons. Microsoft is taking yet another tack, trying to twist elusive subatomic particles called Majorana fermions into a braided shape that would keep qubits in a quantum state longer. Many of these approaches require very specialized conditions, such as temperatures 180 times colder than those found in deep space.

Previous
Previous

Will quantum computers replace supercomputers?

Next
Next

What are the applications of quantum computing?